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Abstract

We present a new system of ordinary differential equations with affine Weyl
group symmetry of type E

(1)
6 . This system is expressed as a Hamiltonian

system of sixth order with a coupled Painlevé VI Hamiltonian.

PACS number: 02.30.Ik
Mathematics Subject Classification: 34M55, 17B80, 37K10

Introduction

The Painlevé equations PJ(J = I, . . . , VI) are ordinary differential equations of second order.
It is known that these PJ admit the following affine Weyl group symmetries [O1]:

PI PII PIII PIV PV PVI

– A
(1)
1 A

(1)
1 ⊕ A

(1)
1 A

(1)
2 A

(1)
3 D

(1)
4

.

Several extensions of the Painlevé equations have been studied from the viewpoint of
affine Weyl group symmetry. The Noumi–Yamada system is a generalization of PII, PIV and
PV for A(1)

n -symmetry [NY1]. The coupled Painlevé VI system with D
(1)
2n+2-symmetry is also

studied [S]. In this paper, we present a new system of ordinary differential equations with
E

(1)
6 -symmetry. Our system can be expressed as a Hamiltonian system of sixth order with a

coupled Painlevé VI Hamiltonian.
In order to obtain this system, we consider a similarity reduction of a Drinfeld–Sokolov

hierarchy of type E
(1)
6 . The Drinfeld–Sokolov hierarchies are extensions of the KdV (or

mKdV) hierarchy [DS]. They are characterized by graded Heisenberg subalgebras of affine
Lie algebras. They also imply several Painlevé systems by similarity reduction as follows
[AS, FS1, FS2, KIK, KK1, KK2]:
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Figure 1. Gradation of g(D
(1)
2n+2) of type (1, 1, 0, 1, 0, . . . , 1, 0, 1, 1).
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Figure 2. Gradation of g(E
(1)
6 ) of type (1, 1, 0, 1, 0, 1, 0).

Lie algebra Gradation Painlevé system
A

(1)
1 (1, 1) PII

(1, 0) PIV

A
(1)
2 (1, 1, 1) PIV

(2, 1, 1) PV
(1, 0, 0) PVI

A
(1)
3 (1, 1, 1, 1) PV

A(1)
n (n � 4) (1, . . . , 1) Noumi–Yamada system

D
(1)
4 (1, 1, 0, 1, 1) PVI

D
(1)
2n+2(n � 2) (1, 1, 0, 1, 0, . . . , 1, 0, 1, 1) Coupled PVI

.

As is seen above, the coupled Painlevé VI system is derived from the D
(1)
2n+2-hierarchy

associated with the graded Heisenberg subalgebra of type (1, 1, 0, 1, 0, . . . , 1, 0, 1, 1). We
apply a similar method to the case of E

(1)
6 by choosing the graded Heisenberg subalgebra

of type (1, 1, 0, 1, 0, 1, 0); see figures 1 and 2. The hierarchy defined thus implies our new
system by similarity reduction.

This paper is organized as follows. In section 1, we present an explicit formula of a
coupled Painlevé VI system with E

(1)
6 -symmetry. In section 2, we recall the affine Lie algebra

g(E
(1)
6 ) and its graded Heisenberg subalgebra of type (1, 1, 0, 1, 0, 1, 0). In section 3, we

formulate a similarity reduction of a Drinfeld–Sokolov hierarchy of type E
(1)
6 . In section 4,

we derive the coupled Painlevé VI system from the similarity reduction.

1. Main result

The Painlevé equation PVI can be expressed as the following Hamiltonian system [IKSY, O2]:

s(s − 1)
dq

ds
= ∂HVI

∂p
, s(s − 1)

dp

ds
= −∂HVI

∂q
,
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with the Hamiltonian HVI = HVI(p, q, s;β0, β1, β3, β4) defined by

HVI = q(q − 1)(q − s)p2 − {(β1 − 1)q(q − 1)

+ β3q(q − s) + β4(q − 1)(q − s)}p + β2(β0 + β2)q,

where βi(i = 0, . . . , 4) are complex parameters satisfying

β0 + β1 + 2β2 + β3 + β4 = 1.

We define a coupled Hamiltonian H by

H = HVI(p1, q1, s;α3, 1 − α1 − 2α2 − 2α3, α1, α3)

+ HVI(p2, q2, s;α3, 1 − 2α3 − 2α4 − α5, α5, α3)

+ HVI(p3, q3, s;α3, 1 − α0 − 2α3 − 2α6, α0, α3)

+
∑

1�i<j�3

{(qi − 1)pi + α2i}{(qj − 1)pj + α2j }(qiqj + s), (1.1)

where αi(i = 0, . . . , 6) are complex parameters satisfying

α0 + α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6 = 1.

Note that these parameters correspond to the simple roots of type E
(1)
6 . We consider a

Hamiltonian system with the Hamiltonian (1.1),

s(s − 1)
dqi

ds
= {H, qi}, s(s − 1)

dpi

ds
= {H,pi} (i = 1, 2, 3), (1.2)

where {·, ·} stands for the Poisson bracket defined by

{pi, qj } = δi,j , {pi, pj } = {qi, qj } = 0 (i, j = 1, 2, 3).

The affine Weyl group W
(
E

(1)
6

)
is generated by the transformations ri(i = 0, . . . , 6)

acting on the simple roots as

ri(αj ) = αj − aijαi (i, j = 0, . . . , 6),

where A = (aij )
6
i,j=0 is the generalized Cartan matrix of type E

(1)
6 defined by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 −1
0 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 −1
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 0

−1 0 0 −1 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let πi(i = 1, 2) be Dynkin diagram automorphisms acting on the simple roots as

πi(αj ) = ασi(j) (i = 1, 2; j = 0, . . . , 6),

where σi(i = 1, 2) are permutations defined by

σ1 = (01)(26), σ2 = (05)(46).

We consider an extension of W
(
E

(1)
6

)
W̃ = 〈r0, r1, r2, r3, r4, r5, r6, π1, π2〉,

3
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with the fundamental relations
r2
i = 1 (i = 0, . . . , 6),

(rirj )
2−aij = 0 (i, j = 0, . . . , 6; i �= j),

π2
i = 1 (i = 1, 2),

(π1π2)
3 = 1,

πirj = rσi(j)πi (i = 1, 2; j = 0, . . . , 6).

The action of the group W̃ can be lifted to canonical transformations of the Hamiltonian
system (1.2). Denoting by

ϕ0 = q3 − 1, ϕ1 = q1 − 1, ϕ2 = p1, ϕ3 = q1q2q3 − s,

ϕ4 = p2, ϕ5 = q2 − 1, ϕ6 = p3,

we obtain

Theorem 1.1. The system (1.2) with (1.1) is invariant under the action of birational canonical
transformations ri(i = 0, . . . , 6) and πi(i = 1, 2) defined by

ri(αj ) = αj − aijαi, ri(ϕj ) = ϕj +
αi

ϕi

{ϕi, ϕj } (i, j = 0, . . . , 6),

and

πi(αj ) = ασi(j), πi(ϕj ) = ϕσi(j) (i = 1, 2; j = 0, . . . , 6).

2. Affine Lie algebra

Following the notation of [Kac], we recall the affine Lie algebra g = g
(
E

(1)
6

)
and its graded

Heisenberg subalgebra of type (1, 1, 0, 1, 0, 1, 0).
The affine Lie algebra g is generated by the Chevalley generators ei, fi, α

∨
i (i = 0, . . . , 6)

and the scaling element d with the fundamental relations

(adei)
1−aij (ej ) = 0, (adfi)

1−aij (fj ) = 0 (i �= j),[
α∨

i , α∨
j

] = 0,
[
α∨

i , ej

] = aij ej ,
[
α∨

i , fj

] = −aijfj , [ei, fj ] = δi,jα
∨
i ,[

d, α∨
i

] = 0, [d, ei] = δi,0e0, [d, fi] = −δi,0f0,

for i, j = 0, . . . , 6. We denote the Cartan subalgebra of g by

h =
6⊕

j=0

Cα∨
j ⊕ Cd.

The canonical central element of g is given by

K = α∨
0 + α∨

1 + 2α∨
2 + 3α∨

3 + 2α∨
4 + α∨

5 + 2α∨
6 .

The normalized invariant form (|) : g × g → C is determined by the conditions(
α∨

i

∣∣α∨
j

) = aij , (ei |fj ) = δi,j ,
(
α∨

i

∣∣ej

) = (
α∨

i

∣∣fj

) = 0,

(d|d) = 0,
(
d
∣∣α∨

j

) = δ0,j , (d|ej ) = (d|fj ) = 0,

for i, j = 0, . . . , 6.
Consider the gradation g = ⊕

k∈Z
gk of type (1, 1, 0, 1, 0, 1, 0) by setting

deg h = deg ei = deg fi = 0 (i = 2, 4, 6),

deg ei = 1, deg fi = −1 (i = 0, 1, 3, 5).

4
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With an element ϑ ∈ h such that(
ϑ

∣∣α∨
i

) = 0 (i = 2, 4, 6),(
ϑ

∣∣α∨
i

) = 1 (i = 0, 1, 3, 5),

this gradation is defined by

gk = {x ∈ g | [ϑ, x] = kx} (k ∈ Z).

Note that ϑ is given explicitly by

ϑ = 6d + 4α∨
1 + 7α∨

2 + 10α∨
3 + 7α∨

4 + 4α∨
5 + 5α∨

6 .

We denote by

g<0 =
⊕
k<0

gk, g�0 =
⊕
k�0

gk.

Such gradation implies the Heisenberg subalgebra of g

s = {x ∈ g | [x,
1] = CK},
with an element of g1


1 = e1 + 2e3 + e5 + e21 + e60 + e23 + e43 + e63 + e234 + e236 + e436 + 2e6234,

where

ei1i2,...,inj = adei1 adei2 , . . . , adein(ej ).

Note that s admits the gradation of type (1, 1, 0, 1, 0, 1, 0), namely

s =
⊕
k∈Z

sk, sk ⊂ gk.

We also remark that the positive part of s has a graded base {
k}∞k=1 satisfying

[
k,
l] = 0, [ϑ,
k] = nk
k (k, l = 1, 2, . . .),

where nk stands for the degree of element 
k defined by

n6l+1 = 6l + 1, n6l+2 = 6l + 1, n6l+3 = 6l + 2,

n6l+4 = 6l + 4, n6l+5 = 6l + 5, n6l+6 = 6l + 5.

We formulate the Drinfeld–Sokolov hierarchy of type E
(1)
6 associated with the Heisenberg

subalgebra s by using these 
k in the following section.

Remark 2.1. The isomorphism classes of the Heisenberg subalgebras are in one-to-one
correspondence with the conjugacy classes of the finite Weyl group [KP]. In the notation
of [C], the Heisenberg subalgebra s introduced above corresponds to the regular primitive
conjugacy class E6(a2) of the Weyl group W(E6); see [DF].

3. Drinfeld–Sokolov hierarchy

In this section, we formulate a similarity reduction of a Drinfeld–Sokolov hierarchy of type
E

(1)
6 associated with the Heisenberg subalgebra s.

In the following, we use the notation of infinite dimensional groups

G<0 = exp(̂g<0), G�0 = exp(̂g�0),

where ĝ<0 and ĝ�0 are the completions of g<0 and g�0, respectively.

5
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Let X(0) ∈ G<0G�0. Introducing the time variables tk(k = 1, 2, . . .), we consider a
G<0G�0-valued function

X = X(t1, t2, . . .) = exp

( ∞∑
k=1

tk
k

)
X(0).

Then we have a system of partial differential equations

X∂kX
−1 = ∂k − 
k (k = 1, 2, . . .), (3.1)

where ∂k = ∂/∂tk , defined through the adjoint action of G<0G�0 on ĝ<0 ⊕ g�0. Via the
decomposition

X = W−1Z, W ∈ G<0, Z ∈ G�0,

the system (3.1) implies a system of partial differential equations

∂k − Bk = W(∂k − 
k)W
−1 (k = 1, 2, . . .), (3.2)

where Bk stands for the g�0-component of W
kW
−1 ∈ ĝ<0 ⊕ g�0. The Zakharov–Shabat

equations,

[∂k − Bk, ∂l − Bl] = 0 (k, l = 1, 2, . . .), (3.3)

follow from the system (3.2).
Under the system (3.2), we consider the operator

M = W exp

( ∞∑
k=1

tk
k

)
ϑ exp

(
−

∞∑
k=1

tk
k

)
W−1.

Then the operator M satisfies

[∂k − Bk,M] = 0 (k = 1, 2, . . .). (3.4)

Note that

M = WϑW−1 −
∞∑

k=1

nktkW
kW
−1.

Now we require that the similarity condition M ∈ g�0 be satisfied. Then we have

M = ϑ −
∞∑

k=1

nktkBk.

We also assume that tk = 0 for k � 3. Then systems (3.3) and (3.4) are equivalent to

[∂1 − B1, ∂2 − B2] = 0,
(3.5)

[∂k − Bk, ϑ − t1B1 − t2B2] = 0 (k = 1, 2).

We regard the system (3.5) as a similarity reduction of the Drinfeld–Sokolov hierarchy of type
E

(1)
6 .

The g�0-valued functions Bk(k = 1, 2) are expressed in the form

Bk = Uk + 
k, Uk =
6∑

i=0

uk,iα
∨
i +

∑
i=2,4,6

xk,iei +
∑

i=2,4,6

yk,ifi .

In terms of the operators Uk ∈ g0, this similarity reduction can be expressed as

∂1(U2) − ∂2(U1) + [U2, U1] = 0,

[
1, U2] − [
2, U1] = 0, (3.6)

t1∂1(Uk) + t2∂2(Uk) + Uk = 0 (k = 1, 2).

6
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Note that the operators 
k ∈ g1 are given by


1 = e1 + 2e3 + e5 + e21 + e60 + e23 + e43 + e63 + e234 + e236 + e436 + 2e6234,


2 = 2e0 − 2e3 − 2e5 − 2e21 − 2e45 + 2e23 + 2e43 − 7e63 − 4e234 + 5e236 − 4e436 − 2e6234.

In the following, we use the notation of a g�0-valued 1-form B = B1 dt1 + B2 dt2 with
respect to the coordinates t = (t1, t2). Then the similarity reduction (3.5) is expressed as

dtM = [B,M], dtB = B ∧ B, (3.7)

where dt stands for an exterior differentiation with respect to t. Denoting by

M1 = −t1
1 − t2
2, B1 = 
1 dt1 + 
2 dt2,

we can express the operators M and B in the form

M = θ +
∑

i=2,4,6

ξiei +
∑

i=2,4,6

ψifi + M1,

B = u +
∑

i=2,4,6

xiei +
∑

i=2,4,6

yifi + B1,

where

θ = ϑ +
6∑

i=0

θiα
∨
i , u =

6∑
i=0

uiα
∨
i .

The system (3.7) is expressed in terms of these variables as follows:

dtθi = xiψi − yiξi , dtθj = 0,

dtξi = (
u

∣∣α∨
i

)
ξi − xi

(
θ
∣∣α∨

i

)
,

dtψi = −(
u

∣∣α∨
i

)
ψi + yi

(
θ
∣∣α∨

i

)
and

dtui = xi ∧ yi + yi ∧ xi , dtuj = 0,

dtxi = (
u

∣∣α∨
i

) ∧ xi , dtyi = −(
u

∣∣α∨
i

) ∧ yi ,

for i = 2, 4, 6 and j = 0, 1, 3, 5.
In this section, we proposed three representations (3.5), (3.6) and (3.7) of the similarity

reduction. In the following, we use the system (3.7) in order to derive the system (1.2).

4. Derivation of coupled PVI

In this section, we derive the Hamiltonian system (1.2) from the similarity reduction (3.7). Let
n+ be the subalgebra of g generated by ei(i = 0, . . . , 6) and b+ = h⊕n+ the Borel subalgebra
of g. We introduce below a gauge transformation for the system (3.7)

M+ = exp(ad(�))M, dt − B+ = exp(ad(�))(dt − B),

with � ∈ g0 such that M+ and B+ should take values in b+.
We first consider a gauge transformation

M∗ = exp(ad(�1))M, dt − B∗ = exp(ad(�1))(dt − B),

with �1 ∈ g0 ∩ b+ such that

exp(ad(�1))(M1) =
∑

i=0,1,3,5

ciei + e21 + e45 + e60 + e23 + e43 + c63e63 + e234.

7
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Note that c0, c1, c3, c5 and c63 are algebraic functions in t1 and t2. Then we have

dtM∗ = [B∗,M∗], dtB∗ = B∗ ∧ B∗. (4.1)

With the notation

M∗
1 = exp(ad(�1))(M1), B∗

1 = exp(ad(�1))(B1),

the operators M∗ and B∗ are expressed in the form

M∗ = θ∗ +
∑

i=2,4,6

ξ ∗
i ei +

∑
i=2,4,6

ψ∗
i fi + M∗

1,

B∗ = u∗ +
∑

i=2,4,6

x∗
i ei +

∑
i=2,4,6

y∗
i fi + B∗

1,

where

θ∗ = ϑ +
6∑

i=0

θ∗
i α∨

i , u∗ =
6∑

i=0

u∗
i α

∨
i .

We next consider a gauge transformation

M+ = exp(ad(�2))M∗, dt − B+ = exp(ad(�2))(dt − B∗),

with �2 = ∑
i=2,4,6 λifi such that M+,B+ ∈ b+, namely

ξ ∗
i λ2

i − (
θ∗∣∣α∨

i

)
λi − ψ∗

i = 0 (i = 2, 4, 6) (4.2)

and

dtλi = x∗
i λ

2
i − (

u∗∣∣α∨
i

)
λi − y∗

i (i = 2, 4, 6). (4.3)

Here we have

Lemma 4.1. Under the system (4.1), equation (4.3) follows from equation (4.2).

Proof. The system (4.1) can be expressed as

dtθ
∗
i = x∗

i ψ
∗
i − y∗

i ξ
∗
i , dtθ

∗
j = 0,

dtξ
∗
i = (

u∗∣∣α∨
i

)
ξ ∗
i − x∗

i

(
θ∗∣∣α∨

i

)
, (4.4)

dtψ
∗
i = −(

u∗∣∣α∨
i

)
ψ∗

i + y∗
i

(
θ∗∣∣α∨

i

)
,

for i = 2, 4, 6 and j = 0, 1, 3, 5. By using (4.4) and (dtθ
∗|α∨

i ) = 2dtθ
∗
i , we obtain

dt

(
ξ ∗
i λ2

i − (
θ∗∣∣α∨

i

)
λi − ψ∗

i

) = {
2ξ ∗

i λi − (θ∗|α∨
i )

} {
dtλi − x∗

i λ
2
i +

(
u∗∣∣α∨

i

)
λi + y∗

i

}
(i = 2, 4, 6).

It follows that equation (4.2) implies (4.3) or

λi =
(
θ∗∣∣α∨

i

)
2ξ ∗

i

(i = 2, 4, 6). (4.5)

Hence, it is enough to verify that equation (4.3) follows from (4.5). Together with (4.4),
equation (4.5) implies

dtλi =
(
dtθ

∗∣∣α∨
i

)
ξ ∗
i − (

θ∗∣∣α∨
i

)
dtξ

∗
i

2(ξ ∗
i )2

= x∗
i λ

2
i − (

u∗∣∣α∨
i

)
λi − y∗

i +
x∗

i

{
4ξ ∗

i ψ∗
i +

(
θ∗|α∨

i

)2}
4(ξ ∗

i )2
. (4.6)

8
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On the other hand, we obtain

4ξ ∗
i ψ∗

i +
(
θ∗∣∣α∨

i

)2 = 0 (4.7)

by substituting (4.5) into (4.2). Combining (4.6) and (4.7), we obtain equation (4.3). �

Thanks to lemma 4.1, the gauge parameters λi(i = 2, 4, 6) are determined by
equation (4.2). Hence we obtain the system on b+

dtM+ = [B+,M+], dtB+ = B+ ∧ B+, (4.8)

with dependent variables λi and μi = ξ ∗
i (i = 2, 4, 6). The operator M+ is described as

M+ = κ +
∑

i=2,4,6

μiei + (c0 + λ6)e0 + (c1 + λ2)e1 + (c3 + λ2 + λ4 + c63λ6 − λ2λ4)e3

+ (c5 + λ4)e5 + e21 + e45 + e60 + (1 − λ4)e23 + (1 − λ2)e43 + c63e63 + e234,

where κ ∈ h. Note that dtκ = 0.
Let s1 and s2 be independent variables defined by

s1 = c63(1 + c3 − c0c63)

6
, s2 = c63(1 + c1)(1 + c5)

6
.

We now regard the system (4.8) as a system of ordinary differential equations[
s(s − 1)

d

ds
− B,M+

]
= 0, (4.9)

with respect to the independent variable s = s1 by setting s2 = 1. The operator B is expressed
in the form

B =
6∑

i=0

uiα
∨
i +

6∑
i=0

xiei + x21e21 + x45e45 + x23e23 + x43e43

+ x63e63 + x234e234 + x236e236 + x436e436 + x6234e6234.

Each coefficient of B is a polynomial in λi and μi ; we do not give the explicit formula.
Let qi, pi(i = 1, 2, 3) be dependent variables defined by

q1 = 1 − λ2

1 + c1
, q2 = 1 − λ4

1 + c5
, q3 = 1 + c3 − c0c63

1 + c3 + c63λ6
,

p1 = − (1 + c1)μ2

6
, p2 = − (1 + c5)μ4

6
, (4.10)

p3 = − (1 + c3 + c63λ6)
{
(1 + c3 + c63λ6)μ6 + c63

(
κ
∣∣α∨

6

)}
6c63(1 + c3 − c0c63)

.

We also set

αi =
(
κ
∣∣α∨

i

)
6

(i = 0, . . . , 6).

Then we obtain

Theorem 4.2. The system (4.9) is equivalent to the system (1.2) with (1.1).

Remark 4.3. The system (1.2) with (1.1) can be regarded as the compatibility condition of a
Lax pair

M+w = 0, s(s − 1)
dw

ds
= Bw, (4.11)

9
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where w = exp(�)W exp
(∑∞

k=1 tk
k

)
. On the other hand, the affine Lie algebra g

(
E

(1)
6

)
is

realized as a central extension of the loop algebra g(E6)[z, z−1] with a derivation zd/dz. In
this framework, the system (4.11) can be identified with a Lax pair

z
dw

dz
= Mw, s(s − 1)

dw

ds
= Bw,

where M = (6d − M+)/6.

Lastly, we note a derivation of the affine Weyl group symmetry for the system (1.2). We
define a Poisson structure for the b+-valued operator M+ by

{μi, λj } = 6δi,j , {μi, μj } = {λi, λj } = 0 (i, j = 2, 4, 6).

It is equivalent to

{pi, qj } = δi,j , {pi, pj } = {qi, qj } = 0 (i, j = 1, 2, 3),

via the transformation (4.10). Hence pi, qi(i = 1, 2, 3) give a canonical coordinate system
associated with the Poisson structure for M+.

Thanks to [NY2], we then obtain birational canonical transformations ri(i = 0, . . . , 6)

given in theorem 1.1. They are derived from the transformations

ri(X) = X exp(−ei) exp(fi) exp(−ei) (i = 0, . . . , 6),

where X = exp
(∑∞

k=1 tk
k

)
X(0).
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Century Later (CRM Series in Mathematical Physics) ed R Conte (Berlin: Springer)

[S] Sasano Y 2006 Higher-order Painlevé equations of type D
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