Coupled Painlevé VI system with $E^{(1)} 6^{\text {-symmetry }}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42145205
(http://iopscience.iop.org/1751-8121/42/14/145205)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.153
The article was downloaded on 03/06/2010 at 07:35

Please note that terms and conditions apply.

Coupled Painlevé VI system with $E_{6}^{(1)}$-symmetry

Kenta Fuji and Takao Suzuki
Department of Mathematics, Kobe University Rokko, Kobe 657-8501, Japan
E-mail: suzukit@math.kobe-u.ac.jp

Received 9 November 2008, in final form 24 February 2009
Published 16 March 2009
Online at stacks.iop.org/JPhysA/42/145205

Abstract

We present a new system of ordinary differential equations with affine Weyl group symmetry of type $E_{6}^{(1)}$. This system is expressed as a Hamiltonian system of sixth order with a coupled Painlevé VI Hamiltonian.

PACS number: 02.30.Ik
Mathematics Subject Classification: 34M55, 17B80, 37K10

Introduction

The Painlevé equations $P_{\mathrm{J}}(J=\mathrm{I}, \ldots, \mathrm{VI})$ are ordinary differential equations of second order. It is known that these P_{J} admit the following affine Weyl group symmetries [O1]:

P_{I}	P_{II}	P_{III}	P_{IV}	P_{V}	P_{VI}
-	$A_{1}^{(\mathrm{I})}$	$A_{1}^{(1)} \oplus A_{1}^{(\mathrm{I})}$	$A_{2}^{(1)}$	$A_{3}^{(1)}$	$D_{4}^{(1)}$

Several extensions of the Painlevé equations have been studied from the viewpoint of affine Weyl group symmetry. The Noumi-Yamada system is a generalization of $P_{\mathrm{II}}, P_{\mathrm{IV}}$ and P_{V} for $A_{n}^{(1)}$-symmetry [NY1]. The coupled Painlevé VI system with $D_{2 n+2}^{(1)}$-symmetry is also studied [S]. In this paper, we present a new system of ordinary differential equations with $E_{6}^{(1)}$-symmetry. Our system can be expressed as a Hamiltonian system of sixth order with a coupled Painlevé VI Hamiltonian.

In order to obtain this system, we consider a similarity reduction of a Drinfeld-Sokolov hierarchy of type $E_{6}^{(1)}$. The Drinfeld-Sokolov hierarchies are extensions of the KdV (or mKdV) hierarchy [DS]. They are characterized by graded Heisenberg subalgebras of affine Lie algebras. They also imply several Painlevé systems by similarity reduction as follows [AS, FS1, FS2, KIK, KK1, KK2]:

Figure 1. Gradation of $\mathfrak{g}\left(D_{2 n+2}^{(1)}\right)$ of type $(1,1,0,1,0, \ldots, 1,0,1,1)$.

Figure 2. Gradation of $\mathfrak{g}\left(E_{6}^{(1)}\right)$ of type $(1,1,0,1,0,1,0)$.

Lie algebra	Gradation	Painlevé system
$A_{1}^{(1)}$	$(1,1)$	P_{II}
	$(1,0)$	P_{IV}
$A_{2}^{(1)}$	$(1,1,1)$	P_{IV}
	$(2,1,1)$	P_{V}
	$(1,0,0)$	P_{VI}
$A_{3}^{(1)}$	$(1,1,1,1)$	P_{V}
$A_{n}^{(1)}(n \geqslant 4)$	$(1, \ldots, 1)$	Noumi-Yamada system
$D_{4}^{(1)}$	$(1,1,0,1,1)$	P_{VI}
$D_{2 n+2}^{(1)}(n \geqslant 2)$	$(1,1,0,1,0, \ldots, 1,0,1,1)$	Coupled P_{VI}

As is seen above, the coupled Painlevé VI system is derived from the $D_{2 n+2}^{(1)}$-hierarchy associated with the graded Heisenberg subalgebra of type ($1,1,0,1,0, \ldots, 1,0,1,1$). We apply a similar method to the case of $E_{6}^{(1)}$ by choosing the graded Heisenberg subalgebra of type $(1,1,0,1,0,1,0)$; see figures 1 and 2 . The hierarchy defined thus implies our new system by similarity reduction.

This paper is organized as follows. In section 1, we present an explicit formula of a coupled Painlevé VI system with $E_{6}^{(1)}$-symmetry. In section 2, we recall the affine Lie algebra $\mathfrak{g}\left(E_{6}^{(1)}\right)$ and its graded Heisenberg subalgebra of type ($1,1,0,1,0,1,0$). In section 3, we formulate a similarity reduction of a Drinfeld-Sokolov hierarchy of type $E_{6}^{(1)}$. In section 4, we derive the coupled Painlevé VI system from the similarity reduction.

1. Main result

The Painlevé equation P_{VI} can be expressed as the following Hamiltonian system [IKSY, O2]:

$$
s(s-1) \frac{\mathrm{d} q}{\mathrm{~d} s}=\frac{\partial H_{\mathrm{VI}}}{\partial p}, \quad s(s-1) \frac{\mathrm{d} p}{\mathrm{~d} s}=-\frac{\partial H_{\mathrm{VI}}}{\partial q}
$$

with the Hamiltonian $H_{\mathrm{VI}}=H_{\mathrm{VI}}\left(p, q, s ; \beta_{0}, \beta_{1}, \beta_{3}, \beta_{4}\right)$ defined by

$$
\begin{aligned}
H_{\mathrm{VI}}=q(q-1) & (q-s) p^{2}-\left\{\left(\beta_{1}-1\right) q(q-1)\right. \\
& \left.+\beta_{3} q(q-s)+\beta_{4}(q-1)(q-s)\right\} p+\beta_{2}\left(\beta_{0}+\beta_{2}\right) q
\end{aligned}
$$

where $\beta_{i}(i=0, \ldots, 4)$ are complex parameters satisfying

$$
\beta_{0}+\beta_{1}+2 \beta_{2}+\beta_{3}+\beta_{4}=1
$$

We define a coupled Hamiltonian H by

$$
\begin{align*}
H=H_{\mathrm{VI}}\left(p_{1},\right. & \left.q_{1}, s ; \alpha_{3}, 1-\alpha_{1}-2 \alpha_{2}-2 \alpha_{3}, \alpha_{1}, \alpha_{3}\right) \\
& +H_{\mathrm{VI}}\left(p_{2}, q_{2}, s ; \alpha_{3}, 1-2 \alpha_{3}-2 \alpha_{4}-\alpha_{5}, \alpha_{5}, \alpha_{3}\right) \\
& +H_{\mathrm{VI}}\left(p_{3}, q_{3}, s ; \alpha_{3}, 1-\alpha_{0}-2 \alpha_{3}-2 \alpha_{6}, \alpha_{0}, \alpha_{3}\right) \\
& +\sum_{1 \leqslant i<j \leqslant 3}\left\{\left(q_{i}-1\right) p_{i}+\alpha_{2 i}\right\}\left\{\left(q_{j}-1\right) p_{j}+\alpha_{2 j}\right\}\left(q_{i} q_{j}+s\right) \tag{1.1}
\end{align*}
$$

where $\alpha_{i}(i=0, \ldots, 6)$ are complex parameters satisfying

$$
\alpha_{0}+\alpha_{1}+2 \alpha_{2}+3 \alpha_{3}+2 \alpha_{4}+\alpha_{5}+2 \alpha_{6}=1
$$

Note that these parameters correspond to the simple roots of type $E_{6}^{(1)}$. We consider a Hamiltonian system with the Hamiltonian (1.1),

$$
\begin{equation*}
s(s-1) \frac{\mathrm{d} q_{i}}{\mathrm{~d} s}=\left\{H, q_{i}\right\}, \quad s(s-1) \frac{\mathrm{d} p_{i}}{\mathrm{~d} s}=\left\{H, p_{i}\right\} \quad(i=1,2,3), \tag{1.2}
\end{equation*}
$$

where $\{\cdot, \cdot\}$ stands for the Poisson bracket defined by

$$
\left\{p_{i}, q_{j}\right\}=\delta_{i, j}, \quad\left\{p_{i}, p_{j}\right\}=\left\{q_{i}, q_{j}\right\}=0 \quad(i, j=1,2,3)
$$

The affine Weyl group $W\left(E_{6}^{(1)}\right)$ is generated by the transformations $r_{i}(i=0, \ldots, 6)$ acting on the simple roots as

$$
r_{i}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j} \alpha_{i} \quad(i, j=0, \ldots, 6)
$$

where $A=\left(a_{i j}\right)_{i, j=0}^{6}$ is the generalized Cartan matrix of type $E_{6}^{(1)}$ defined by

$$
A=\left[\begin{array}{ccccccc}
2 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 2 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 & -1 \\
0 & 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 2 & 0 \\
-1 & 0 & 0 & -1 & 0 & 0 & 2
\end{array}\right]
$$

Let $\pi_{i}(i=1,2)$ be Dynkin diagram automorphisms acting on the simple roots as

$$
\pi_{i}\left(\alpha_{j}\right)=\alpha_{\sigma_{i}(j)} \quad(i=1,2 ; j=0, \ldots, 6)
$$

where $\sigma_{i}(i=1,2)$ are permutations defined by

$$
\sigma_{1}=(01)(26), \quad \sigma_{2}=(05)(46)
$$

We consider an extension of $W\left(E_{6}^{(1)}\right)$

$$
\widetilde{W}=\left\langle r_{0}, r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, \pi_{1}, \pi_{2}\right\rangle,
$$

with the fundamental relations

$$
\begin{array}{ll}
r_{i}^{2}=1 & (i=0, \ldots, 6) \\
\left(r_{i} r_{j}\right)^{2-a_{i j}}=0 & (i, j=0, \ldots, 6 ; i \neq j) \\
\pi_{i}^{2}=1 & (i=1,2) \\
\left(\pi_{1} \pi_{2}\right)^{3}=1, & \\
\pi_{i} r_{j}=r_{\sigma_{i}(j)} \pi_{i} & (i=1,2 ; j=0, \ldots, 6)
\end{array}
$$

The action of the group \widetilde{W} can be lifted to canonical transformations of the Hamiltonian system (1.2). Denoting by

$$
\begin{array}{lll}
\varphi_{0}=q_{3}-1, & \varphi_{1}=q_{1}-1, & \varphi_{2}=p_{1}, \quad \varphi_{3}=q_{1} q_{2} q_{3}-s \\
\varphi_{4}=p_{2}, & \varphi_{5}=q_{2}-1, & \varphi_{6}=p_{3}
\end{array}
$$

we obtain
Theorem 1.1. The system (1.2) with (1.1) is invariant under the action of birational canonical transformations $r_{i}(i=0, \ldots, 6)$ and $\pi_{i}(i=1,2)$ defined by

$$
r_{i}\left(\alpha_{j}\right)=\alpha_{j}-a_{i j} \alpha_{i}, \quad r_{i}\left(\varphi_{j}\right)=\varphi_{j}+\frac{\alpha_{i}}{\varphi_{i}}\left\{\varphi_{i}, \varphi_{j}\right\} \quad(i, j=0, \ldots, 6),
$$

and

$$
\pi_{i}\left(\alpha_{j}\right)=\alpha_{\sigma_{i}(j)}, \quad \pi_{i}\left(\varphi_{j}\right)=\varphi_{\sigma_{i}(j)} \quad(i=1,2 ; j=0, \ldots, 6)
$$

2. Affine Lie algebra

Following the notation of [Kac], we recall the affine Lie algebra $\mathfrak{g}=\mathfrak{g}\left(E_{6}^{(1)}\right)$ and its graded Heisenberg subalgebra of type ($1,1,0,1,0,1,0$).

The affine Lie algebra \mathfrak{g} is generated by the Chevalley generators $e_{i}, f_{i}, \alpha_{i}^{\vee}(i=0, \ldots, 6)$ and the scaling element d with the fundamental relations

$$
\begin{aligned}
& \left(\operatorname{ad} e_{i}\right)^{1-a_{i j}}\left(e_{j}\right)=0, \quad\left(\operatorname{ad} f_{i}\right)^{1-a_{i j}}\left(f_{j}\right)=0 \quad(i \neq j), \\
& {\left[\alpha_{i}^{\vee}, \alpha_{j}^{\vee}\right]=0, \quad\left[\alpha_{i}^{\vee}, e_{j}\right]=a_{i j} e_{j}, \quad\left[\alpha_{i}^{\vee}, f_{j}\right]=-a_{i j} f_{j}, \quad\left[e_{i}, f_{j}\right]=\delta_{i, j} \alpha_{i}^{\vee},} \\
& {\left[d, \alpha_{i}^{\vee}\right]=0, \quad\left[d, e_{i}\right]=\delta_{i, 0} e_{0}, \quad\left[d, f_{i}\right]=-\delta_{i, 0} f_{0},}
\end{aligned}
$$

for $i, j=0, \ldots, 6$. We denote the Cartan subalgebra of \mathfrak{g} by

$$
\mathfrak{h}=\bigoplus_{j=0}^{6} \mathbb{C} \alpha_{j}^{\vee} \oplus \mathbb{C} d
$$

The canonical central element of \mathfrak{g} is given by

$$
K=\alpha_{0}^{\vee}+\alpha_{1}^{\vee}+2 \alpha_{2}^{\vee}+3 \alpha_{3}^{\vee}+2 \alpha_{4}^{\vee}+\alpha_{5}^{\vee}+2 \alpha_{6}^{\vee}
$$

The normalized invariant form $(\mid): \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ is determined by the conditions

$$
\begin{array}{lll}
\left(\alpha_{i}^{\vee} \mid \alpha_{j}^{\vee}\right)=a_{i j}, & \left(e_{i} \mid f_{j}\right)=\delta_{i, j}, & \left(\alpha_{i}^{\vee} \mid e_{j}\right)=\left(\alpha_{i}^{\vee} \mid f_{j}\right)=0, \\
(d \mid d)=0, & \left(d \mid \alpha_{j}^{\vee}\right)=\delta_{0, j}, & \left(d \mid e_{j}\right)=\left(d \mid f_{j}\right)=0,
\end{array}
$$

for $i, j=0, \ldots, 6$.
Consider the gradation $\mathfrak{g}=\bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{k}$ of type $(1,1,0,1,0,1,0)$ by setting

$$
\begin{array}{ll}
\operatorname{deg} \mathfrak{h}=\operatorname{deg} e_{i}=\operatorname{deg} f_{i}=0 & (i=2,4,6) \\
\operatorname{deg} e_{i}=1, \quad \operatorname{deg} f_{i}=-1 & (i=0,1,3,5) .
\end{array}
$$

With an element $\vartheta \in \mathfrak{h}$ such that

$$
\begin{array}{ll}
\left(\vartheta \mid \alpha_{i}^{\vee}\right)=0 & (i=2,4,6), \\
\left(\vartheta \mid \alpha_{i}^{\vee}\right)=1 & (i=0,1,3,5),
\end{array}
$$

this gradation is defined by

$$
\mathfrak{g}_{k}=\{x \in \mathfrak{g} \mid[\vartheta, x]=k x\} \quad(k \in \mathbb{Z}) .
$$

Note that ϑ is given explicitly by

$$
\vartheta=6 d+4 \alpha_{1}^{\vee}+7 \alpha_{2}^{\vee}+10 \alpha_{3}^{\vee}+7 \alpha_{4}^{\vee}+4 \alpha_{5}^{\vee}+5 \alpha_{6}^{\vee}
$$

We denote by

$$
\mathfrak{g}_{<0}=\bigoplus_{k<0} \mathfrak{g}_{k}, \quad \mathfrak{g}_{\geqslant 0}=\bigoplus_{k \geqslant 0} \mathfrak{g}_{k}
$$

Such gradation implies the Heisenberg subalgebra of \mathfrak{g}

$$
\mathfrak{s}=\left\{x \in \mathfrak{g} \mid\left[x, \Lambda_{1}\right]=\mathbb{C} K\right\},
$$

with an element of \mathfrak{g}_{1}

$$
\Lambda_{1}=e_{1}+2 e_{3}+e_{5}+e_{21}+e_{60}+e_{23}+e_{43}+e_{63}+e_{234}+e_{236}+e_{436}+2 e_{6234}
$$

where

$$
e_{i_{1} i_{2}, \ldots, i_{n} j}=\operatorname{ad} e_{i_{1}} \operatorname{ad} e_{i_{2}}, \ldots, \operatorname{ad} e_{i_{n}}\left(e_{j}\right)
$$

Note that \mathfrak{s} admits the gradation of type $(1,1,0,1,0,1,0)$, namely

$$
\mathfrak{s}=\bigoplus_{k \in \mathbb{Z}} \mathfrak{s}_{k}, \quad \mathfrak{s}_{k} \subset \mathfrak{g}_{k}
$$

We also remark that the positive part of \mathfrak{s} has a graded base $\left\{\Lambda_{k}\right\}_{k=1}^{\infty}$ satisfying

$$
\left[\Lambda_{k}, \Lambda_{l}\right]=0, \quad\left[\vartheta, \Lambda_{k}\right]=n_{k} \Lambda_{k} \quad(k, l=1,2, \ldots),
$$

where n_{k} stands for the degree of element Λ_{k} defined by

$$
\begin{array}{lll}
n_{6 l+1}=6 l+1, & n_{6 l+2}=6 l+1, & n_{6 l+3}=6 l+2 \\
n_{6 l+4}=6 l+4, & n_{6 l+5}=6 l+5, & n_{6 l+6}=6 l+5
\end{array}
$$

We formulate the Drinfeld-Sokolov hierarchy of type $E_{6}^{(1)}$ associated with the Heisenberg subalgebra \mathfrak{s} by using these Λ_{k} in the following section.

Remark 2.1. The isomorphism classes of the Heisenberg subalgebras are in one-to-one correspondence with the conjugacy classes of the finite Weyl group [KP]. In the notation of [C], the Heisenberg subalgebra \mathfrak{s} introduced above corresponds to the regular primitive conjugacy class $E_{6}\left(a_{2}\right)$ of the Weyl group $W\left(E_{6}\right)$; see $[\mathrm{DF}]$.

3. Drinfeld-Sokolov hierarchy

In this section, we formulate a similarity reduction of a Drinfeld-Sokolov hierarchy of type $E_{6}^{(1)}$ associated with the Heisenberg subalgebra \mathfrak{s}.

In the following, we use the notation of infinite dimensional groups

$$
G_{<0}=\exp \left(\widehat{\mathfrak{g}}_{<0}\right), \quad G_{\geqslant 0}=\exp \left(\widehat{g}_{\geqslant 0}\right),
$$

where $\widehat{\mathfrak{g}}_{<0}$ and $\widehat{\mathfrak{g}} \geqslant 0$ are the completions of $\mathfrak{g}_{<0}$ and $\mathfrak{g} \geqslant 0$, respectively.

Let $X(0) \in G_{<0} G_{\geqslant 0}$. Introducing the time variables $t_{k}(k=1,2, \ldots)$, we consider a $G_{<0} G_{\geqslant 0}$-valued function

$$
X=X\left(t_{1}, t_{2}, \ldots\right)=\exp \left(\sum_{k=1}^{\infty} t_{k} \Lambda_{k}\right) X(0)
$$

Then we have a system of partial differential equations

$$
\begin{equation*}
X \partial_{k} X^{-1}=\partial_{k}-\Lambda_{k} \quad(k=1,2, \ldots) \tag{3.1}
\end{equation*}
$$

where $\partial_{k}=\partial / \partial t_{k}$, defined through the adjoint action of $G_{<0} G_{\geqslant 0}$ on $\widehat{\mathfrak{g}}_{<0} \oplus \mathfrak{g}_{\geqslant 0}$. Via the decomposition

$$
X=W^{-1} Z, \quad W \in G_{<0}, \quad Z \in G_{\geqslant 0}
$$

the system (3.1) implies a system of partial differential equations

$$
\begin{equation*}
\partial_{k}-B_{k}=W\left(\partial_{k}-\Lambda_{k}\right) W^{-1} \quad(k=1,2, \ldots) \tag{3.2}
\end{equation*}
$$

where B_{k} stands for the $\mathfrak{g}_{\geqslant 0}$-component of $W \Lambda_{k} W^{-1} \in \widehat{\mathfrak{g}}_{<0} \oplus \mathfrak{g}_{\geqslant 0}$. The Zakharov-Shabat equations,

$$
\begin{equation*}
\left[\partial_{k}-B_{k}, \partial_{l}-B_{l}\right]=0 \quad(k, l=1,2, \ldots), \tag{3.3}
\end{equation*}
$$

follow from the system (3.2).
Under the system (3.2), we consider the operator

$$
\mathcal{M}=W \exp \left(\sum_{k=1}^{\infty} t_{k} \Lambda_{k}\right) \vartheta \exp \left(-\sum_{k=1}^{\infty} t_{k} \Lambda_{k}\right) W^{-1} .
$$

Then the operator \mathcal{M} satisfies

$$
\begin{equation*}
\left[\partial_{k}-B_{k}, \mathcal{M}\right]=0 \quad(k=1,2, \ldots) \tag{3.4}
\end{equation*}
$$

Note that

$$
\mathcal{M}=W \vartheta W^{-1}-\sum_{k=1}^{\infty} n_{k} t_{k} W \Lambda_{k} W^{-1}
$$

Now we require that the similarity condition $\mathcal{M} \in \mathfrak{g}_{\geqslant 0}$ be satisfied. Then we have

$$
\mathcal{M}=\vartheta-\sum_{k=1}^{\infty} n_{k} t_{k} B_{k}
$$

We also assume that $t_{k}=0$ for $k \geqslant 3$. Then systems (3.3) and (3.4) are equivalent to

$$
\begin{align*}
& {\left[\partial_{1}-B_{1}, \partial_{2}-B_{2}\right]=0} \\
& {\left[\partial_{k}-B_{k}, \vartheta-t_{1} B_{1}-t_{2} B_{2}\right]=0 \quad(k=1,2)} \tag{3.5}
\end{align*}
$$

We regard the system (3.5) as a similarity reduction of the Drinfeld-Sokolov hierarchy of type $E_{6}^{(1)}$.

The $\mathfrak{g}_{\geqslant 0}$-valued functions $B_{k}(k=1,2)$ are expressed in the form

$$
B_{k}=U_{k}+\Lambda_{k}, \quad U_{k}=\sum_{i=0}^{6} u_{k, i} \alpha_{i}^{\vee}+\sum_{i=2,4,6} x_{k, i} e_{i}+\sum_{i=2,4,6} y_{k, i} f_{i}
$$

In terms of the operators $U_{k} \in \mathfrak{g}_{0}$, this similarity reduction can be expressed as

$$
\begin{align*}
& \partial_{1}\left(U_{2}\right)-\partial_{2}\left(U_{1}\right)+\left[U_{2}, U_{1}\right]=0 \\
& {\left[\Lambda_{1}, U_{2}\right]-\left[\Lambda_{2}, U_{1}\right]=0} \tag{3.6}\\
& t_{1} \partial_{1}\left(U_{k}\right)+t_{2} \partial_{2}\left(U_{k}\right)+U_{k}=0 \quad(k=1,2)
\end{align*}
$$

Note that the operators $\Lambda_{k} \in \mathfrak{g}_{1}$ are given by
$\Lambda_{1}=e_{1}+2 e_{3}+e_{5}+e_{21}+e_{60}+e_{23}+e_{43}+e_{63}+e_{234}+e_{236}+e_{436}+2 e_{6234}$,
$\Lambda_{2}=2 e_{0}-2 e_{3}-2 e_{5}-2 e_{21}-2 e_{45}+2 e_{23}+2 e_{43}-7 e_{63}-4 e_{234}+5 e_{236}-4 e_{436}-2 e_{6234}$.
In the following, we use the notation of a $\mathfrak{g} \geqslant 0$-valued 1 -form $\mathcal{B}=B_{1} \mathrm{~d} t_{1}+B_{2} \mathrm{~d} t_{2}$ with respect to the coordinates $\boldsymbol{t}=\left(t_{1}, t_{2}\right)$. Then the similarity reduction (3.5) is expressed as

$$
\begin{equation*}
d_{t} \mathcal{M}=[\mathcal{B}, \mathcal{M}], \quad d_{t} \mathcal{B}=\mathcal{B} \wedge \mathcal{B} \tag{3.7}
\end{equation*}
$$

where d_{t} stands for an exterior differentiation with respect to t. Denoting by

$$
\mathcal{M}_{1}=-t_{1} \Lambda_{1}-t_{2} \Lambda_{2}, \quad \mathcal{B}_{1}=\Lambda_{1} \mathrm{~d} t_{1}+\Lambda_{2} \mathrm{~d} t_{2}
$$

we can express the operators \mathcal{M} and \mathcal{B} in the form

$$
\begin{aligned}
& \mathcal{M}=\theta+\sum_{i=2,4,6} \xi_{i} e_{i}+\sum_{i=2,4,6} \psi_{i} f_{i}+\mathcal{M}_{1}, \\
& \mathcal{B}=\boldsymbol{u}+\sum_{i=2,4,6} \boldsymbol{x}_{i} e_{i}+\sum_{i=2,4,6} \boldsymbol{y}_{i} f_{i}+\mathcal{B}_{1},
\end{aligned}
$$

where

$$
\theta=\vartheta+\sum_{i=0}^{6} \theta_{i} \alpha_{i}^{\vee}, \quad \boldsymbol{u}=\sum_{i=0}^{6} \boldsymbol{u}_{i} \alpha_{i}^{\vee}
$$

The system (3.7) is expressed in terms of these variables as follows:

$$
\begin{aligned}
& d_{t} \theta_{i}=\boldsymbol{x}_{i} \psi_{i}-\boldsymbol{y}_{i} \xi_{i}, \quad d_{t} \theta_{j}=0 \\
& d_{t} \xi_{i}=\left(\boldsymbol{u} \mid \alpha_{i}^{\vee}\right) \xi_{i}-\boldsymbol{x}_{i}\left(\theta \mid \alpha_{i}^{\vee}\right) \\
& d_{t} \psi_{i}=-\left(\boldsymbol{u} \mid \alpha_{i}^{\vee}\right) \psi_{i}+\boldsymbol{y}_{i}\left(\theta \mid \alpha_{i}^{\vee}\right)
\end{aligned}
$$

and

$$
\begin{array}{rlc}
d_{t} \boldsymbol{u}_{i} & =\boldsymbol{x}_{i} \wedge \boldsymbol{y}_{i}+\boldsymbol{y}_{i} \wedge \boldsymbol{x}_{i}, & d_{t} \boldsymbol{u}_{j}=0 \\
d_{t} \boldsymbol{x}_{i} & =\left(\boldsymbol{u} \mid \alpha_{i}^{\vee}\right) \wedge \boldsymbol{x}_{i}, & d_{t} \boldsymbol{y}_{i}=-\left(\boldsymbol{u} \mid \alpha_{i}^{\vee}\right) \wedge \boldsymbol{y}_{i}
\end{array}
$$

for $i=2,4,6$ and $j=0,1,3,5$.
In this section, we proposed three representations (3.5), (3.6) and (3.7) of the similarity reduction. In the following, we use the system (3.7) in order to derive the system (1.2).

4. Derivation of coupled $\boldsymbol{P}_{\mathrm{VI}}$

In this section, we derive the Hamiltonian system (1.2) from the similarity reduction (3.7). Let \mathfrak{n}_{+}be the subalgebra of \mathfrak{g} generated by $e_{i}(i=0, \ldots, 6)$ and $\mathfrak{b}_{+}=\mathfrak{h} \oplus \mathfrak{n}_{+}$the Borel subalgebra of \mathfrak{g}. We introduce below a gauge transformation for the system (3.7)

$$
\mathcal{M}^{+}=\exp (\operatorname{ad}(\Gamma)) \mathcal{M}, \quad d_{t}-\mathcal{B}^{+}=\exp (\operatorname{ad}(\Gamma))\left(d_{t}-\mathcal{B}\right)
$$

with $\Gamma \in \mathfrak{g}_{0}$ such that \mathcal{M}^{+}and \mathcal{B}^{+}should take values in \mathfrak{b}_{+}.
We first consider a gauge transformation

$$
\mathcal{M}^{*}=\exp \left(\operatorname{ad}\left(\Gamma_{1}\right)\right) \mathcal{M}, \quad d_{t}-\mathcal{B}^{*}=\exp \left(\operatorname{ad}\left(\Gamma_{1}\right)\right)\left(d_{t}-\mathcal{B}\right)
$$

with $\Gamma_{1} \in \mathfrak{g}_{0} \cap \mathfrak{b}_{+}$such that

$$
\exp \left(\operatorname{ad}\left(\Gamma_{1}\right)\right)\left(\mathcal{M}_{1}\right)=\sum_{i=0,1,3,5} c_{i} e_{i}+e_{21}+e_{45}+e_{60}+e_{23}+e_{43}+c_{63} e_{63}+e_{234}
$$

Note that $c_{0}, c_{1}, c_{3}, c_{5}$ and c_{63} are algebraic functions in t_{1} and t_{2}. Then we have

$$
\begin{equation*}
d_{t} \mathcal{M}^{*}=\left[\mathcal{B}^{*}, \mathcal{M}^{*}\right], \quad d_{t} \mathcal{B}^{*}=\mathcal{B}^{*} \wedge \mathcal{B}^{*} \tag{4.1}
\end{equation*}
$$

With the notation

$$
\mathcal{M}_{1}^{*}=\exp \left(\operatorname{ad}\left(\Gamma_{1}\right)\right)\left(\mathcal{M}_{1}\right), \quad \mathcal{B}_{1}^{*}=\exp \left(\operatorname{ad}\left(\Gamma_{1}\right)\right)\left(\mathcal{B}_{1}\right),
$$

the operators \mathcal{M}^{*} and \mathcal{B}^{*} are expressed in the form

$$
\begin{aligned}
\mathcal{M}^{*} & =\theta^{*}+\sum_{i=2,4,6} \xi_{i}^{*} e_{i}+\sum_{i=2,4,6} \psi_{i}^{*} f_{i}+\mathcal{M}_{1}^{*}, \\
\mathcal{B}^{*} & =\boldsymbol{u}^{*}+\sum_{i=2,4,6} \boldsymbol{x}_{i}^{*} e_{i}+\sum_{i=2,4,6} \boldsymbol{y}_{i}^{*} f_{i}+\mathcal{B}_{1}^{*},
\end{aligned}
$$

where

$$
\theta^{*}=\vartheta+\sum_{i=0}^{6} \theta_{i}^{*} \alpha_{i}^{\vee}, \quad \boldsymbol{u}^{*}=\sum_{i=0}^{6} \boldsymbol{u}_{i}^{*} \alpha_{i}^{\vee}
$$

We next consider a gauge transformation

$$
\mathcal{M}^{+}=\exp \left(\operatorname{ad}\left(\Gamma_{2}\right)\right) \mathcal{M}^{*}, \quad d_{t}-\mathcal{B}^{+}=\exp \left(\operatorname{ad}\left(\Gamma_{2}\right)\right)\left(d_{t}-\mathcal{B}^{*}\right)
$$

with $\Gamma_{2}=\sum_{i=2,4,6} \lambda_{i} f_{i}$ such that $\mathcal{M}^{+}, \mathcal{B}^{+} \in \mathfrak{b}_{+}$, namely

$$
\begin{equation*}
\xi_{i}^{*} \lambda_{i}^{2}-\left(\theta^{*} \mid \alpha_{i}^{\vee}\right) \lambda_{i}-\psi_{i}^{*}=0 \quad(i=2,4,6) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{t} \lambda_{i}=x_{i}^{*} \lambda_{i}^{2}-\left(\boldsymbol{u}^{*} \mid \alpha_{i}^{\vee}\right) \lambda_{i}-\boldsymbol{y}_{i}^{*} \quad(i=2,4,6) \tag{4.3}
\end{equation*}
$$

Here we have
Lemma 4.1. Under the system (4.1), equation (4.3) follows from equation (4.2).
Proof. The system (4.1) can be expressed as

$$
\begin{align*}
& d_{t} \theta_{i}^{*}=\boldsymbol{x}_{i}^{*} \psi_{i}^{*}-\boldsymbol{y}_{i}^{*} \xi_{i}^{*}, \quad d_{t} \theta_{j}^{*}=0 \\
& d_{t} \xi_{i}^{*}=\left(\boldsymbol{u}^{*} \mid \alpha_{i}^{\vee}\right) \xi_{i}^{*}-\boldsymbol{x}_{i}^{*}\left(\theta^{*} \mid \alpha_{i}^{\vee}\right) \tag{4.4}\\
& d_{t} \psi_{i}^{*}=-\left(\boldsymbol{u}^{*} \mid \alpha_{i}^{\vee}\right) \psi_{i}^{*}+\boldsymbol{y}_{i}^{*}\left(\theta^{*} \mid \alpha_{i}^{\vee}\right)
\end{align*}
$$

for $i=2,4,6$ and $j=0,1,3,5$. By using (4.4) and $\left(d_{t} \theta^{*} \mid \alpha_{i}^{\vee}\right)=2 d_{t} \theta_{i}^{*}$, we obtain $d_{t}\left(\xi_{i}^{*} \lambda_{i}^{2}-\left(\theta^{*} \mid \alpha_{i}^{\vee}\right) \lambda_{i}-\psi_{i}^{*}\right)=\left\{2 \xi_{i}^{*} \lambda_{i}-\left(\theta^{*} \mid \alpha_{i}^{\vee}\right)\right\}\left\{d_{t} \lambda_{i}-\boldsymbol{x}_{i}^{*} \lambda_{i}^{2}+\left(\boldsymbol{u}^{*} \mid \alpha_{i}^{\vee}\right) \lambda_{i}+\boldsymbol{y}_{i}^{*}\right\}$

$$
(i=2,4,6)
$$

It follows that equation (4.2) implies (4.3) or

$$
\begin{equation*}
\lambda_{i}=\frac{\left(\theta^{*} \mid \alpha_{i}^{\vee}\right)}{2 \xi_{i}^{*}} \quad(i=2,4,6) \tag{4.5}
\end{equation*}
$$

Hence, it is enough to verify that equation (4.3) follows from (4.5). Together with (4.4), equation (4.5) implies

$$
\begin{align*}
d_{t} \lambda_{i} & =\frac{\left(d_{t} \theta^{*} \mid \alpha_{i}^{\vee}\right) \xi_{i}^{*}-\left(\theta^{*} \mid \alpha_{i}^{\vee}\right) d_{t} \xi_{i}^{*}}{2\left(\xi_{i}^{*}\right)^{2}} \\
& =\boldsymbol{x}_{i}^{*} \lambda_{i}^{2}-\left(\boldsymbol{u}^{*} \mid \alpha_{i}^{\vee}\right) \lambda_{i}-\boldsymbol{y}_{i}^{*}+\frac{\boldsymbol{x}_{i}^{*}\left\{4 \xi_{i}^{*} \psi_{i}^{*}+\left(\theta^{*} \mid \alpha_{i}^{\vee}\right)^{2}\right\}}{4\left(\xi_{i}^{*}\right)^{2}} \tag{4.6}
\end{align*}
$$

On the other hand, we obtain

$$
\begin{equation*}
4 \xi_{i}^{*} \psi_{i}^{*}+\left(\theta^{*} \mid \alpha_{i}^{\vee}\right)^{2}=0 \tag{4.7}
\end{equation*}
$$

by substituting (4.5) into (4.2). Combining (4.6) and (4.7), we obtain equation (4.3).
Thanks to lemma 4.1, the gauge parameters $\lambda_{i}(i=2,4,6)$ are determined by equation (4.2). Hence we obtain the system on \mathfrak{b}_{+}

$$
\begin{equation*}
d_{t} \mathcal{M}^{+}=\left[\mathcal{B}^{+}, \mathcal{M}^{+}\right], \quad d_{t} \mathcal{B}^{+}=\mathcal{B}^{+} \wedge \mathcal{B}^{+} \tag{4.8}
\end{equation*}
$$

with dependent variables λ_{i} and $\mu_{i}=\xi_{i}^{*}(i=2,4,6)$. The operator \mathcal{M}^{+}is described as

$$
\begin{aligned}
\mathcal{M}^{+}=\kappa+ & \sum_{i=2,4,6} \mu_{i} e_{i}+\left(c_{0}+\lambda_{6}\right) e_{0}+\left(c_{1}+\lambda_{2}\right) e_{1}+\left(c_{3}+\lambda_{2}+\lambda_{4}+c_{63} \lambda_{6}-\lambda_{2} \lambda_{4}\right) e_{3} \\
& +\left(c_{5}+\lambda_{4}\right) e_{5}+e_{21}+e_{45}+e_{60}+\left(1-\lambda_{4}\right) e_{23}+\left(1-\lambda_{2}\right) e_{43}+c_{63} e_{63}+e_{234}
\end{aligned}
$$

where $\kappa \in \mathfrak{h}$. Note that $d_{t} \kappa=0$.
Let s_{1} and s_{2} be independent variables defined by

$$
s_{1}=\frac{c_{63}\left(1+c_{3}-c_{0} c_{63}\right)}{6}, \quad s_{2}=\frac{c_{63}\left(1+c_{1}\right)\left(1+c_{5}\right)}{6}
$$

We now regard the system (4.8) as a system of ordinary differential equations

$$
\begin{equation*}
\left[s(s-1) \frac{\mathrm{d}}{\mathrm{~d} s}-B, \mathcal{M}^{+}\right]=0, \tag{4.9}
\end{equation*}
$$

with respect to the independent variable $s=s_{1}$ by setting $s_{2}=1$. The operator B is expressed in the form

$$
\begin{aligned}
B=\sum_{i=0}^{6} u_{i} \alpha_{i}^{\vee} & +\sum_{i=0}^{6} x_{i} e_{i}+x_{21} e_{21}+x_{45} e_{45}+x_{23} e_{23}+x_{43} e_{43} \\
& +x_{63} e_{63}+x_{234} e_{234}+x_{236} e_{236}+x_{436} e_{436}+x_{6234} e_{6234}
\end{aligned}
$$

Each coefficient of B is a polynomial in λ_{i} and μ_{i}; we do not give the explicit formula.
Let $q_{i}, p_{i}(i=1,2,3)$ be dependent variables defined by

$$
\begin{align*}
q_{1} & =\frac{1-\lambda_{2}}{1+c_{1}}, \quad q_{2}=\frac{1-\lambda_{4}}{1+c_{5}}, \quad q_{3}=\frac{1+c_{3}-c_{0} c_{63}}{1+c_{3}+c_{63} \lambda_{6}} \\
p_{1} & =-\frac{\left(1+c_{1}\right) \mu_{2}}{6}, \quad p_{2}=-\frac{\left(1+c_{5}\right) \mu_{4}}{6} \tag{4.10}\\
p_{3} & =-\frac{\left(1+c_{3}+c_{63} \lambda_{6}\right)\left\{\left(1+c_{3}+c_{63} \lambda_{6}\right) \mu_{6}+c_{63}\left(\kappa \mid \alpha_{6}^{\vee}\right)\right\}}{6 c_{63}\left(1+c_{3}-c_{0} c_{63}\right)}
\end{align*}
$$

We also set

$$
\alpha_{i}=\frac{\left(\kappa \mid \alpha_{i}^{\vee}\right)}{6} \quad(i=0, \ldots, 6)
$$

Then we obtain
Theorem 4.2. The system (4.9) is equivalent to the system (1.2) with (1.1).
Remark 4.3. The system (1.2) with (1.1) can be regarded as the compatibility condition of a Lax pair

$$
\begin{equation*}
\mathcal{M}^{+} \boldsymbol{w}=0, \quad s(s-1) \frac{\mathrm{d} \boldsymbol{w}}{\mathrm{~d} s}=B \boldsymbol{w} \tag{4.11}
\end{equation*}
$$

where $\boldsymbol{w}=\exp (\Gamma) W \exp \left(\sum_{k=1}^{\infty} t_{k} \Lambda_{k}\right)$. On the other hand, the affine Lie algebra $\mathfrak{g}\left(E_{6}^{(1)}\right)$ is realized as a central extension of the loop algebra $\mathfrak{g}\left(E_{6}\right)\left[z, z^{-1}\right]$ with a derivation $z \mathrm{~d} / \mathrm{d} z$. In this framework, the system (4.11) can be identified with a Lax pair

$$
z \frac{\mathrm{~d} \boldsymbol{w}}{\mathrm{~d} z}=M \boldsymbol{w}, \quad s(s-1) \frac{\mathrm{d} \boldsymbol{w}}{\mathrm{~d} s}=B \boldsymbol{w}
$$

where $M=\left(6 d-\mathcal{M}^{+}\right) / 6$.
Lastly, we note a derivation of the affine Weyl group symmetry for the system (1.2). We define a Poisson structure for the \mathfrak{b}_{+}-valued operator \mathcal{M}^{+}by

$$
\left\{\mu_{i}, \lambda_{j}\right\}=6 \delta_{i, j}, \quad\left\{\mu_{i}, \mu_{j}\right\}=\left\{\lambda_{i}, \lambda_{j}\right\}=0 \quad(i, j=2,4,6) .
$$

It is equivalent to

$$
\left\{p_{i}, q_{j}\right\}=\delta_{i, j}, \quad\left\{p_{i}, p_{j}\right\}=\left\{q_{i}, q_{j}\right\}=0 \quad(i, j=1,2,3)
$$

via the transformation (4.10). Hence $p_{i}, q_{i}(i=1,2,3)$ give a canonical coordinate system associated with the Poisson structure for \mathcal{M}^{+}.

Thanks to [NY2], we then obtain birational canonical transformations $r_{i}(i=0, \ldots, 6)$ given in theorem 1.1. They are derived from the transformations

$$
r_{i}(X)=X \exp \left(-e_{i}\right) \exp \left(f_{i}\right) \exp \left(-e_{i}\right) \quad(i=0, \ldots, 6)
$$

where $X=\exp \left(\sum_{k=1}^{\infty} t_{k} \Lambda_{k}\right) X(0)$.

Acknowledgments

The authors are grateful to Professors Masatoshi Noumi, Yasuhiko Yamada and Teruhisa Tsuda for valuable discussions and advice. This work is partially supported by a fellowship of the Japan Society for the Promotion of Science (JSPS).

References

[AS] Ablowitz M J and Segur H 1977 Exact linearization of a Painlevé transcendent Phys. Rev. Lett. 38 1103-6
[C] Carter R 1972 Conjugacy classes in the Weyl group Compos. Math. 25 1-59
[DF] Delduc F and Fehér L 1995 Regular conjugacy classes in the Weyl group and integral hierarchies J. Phys. A: Math. Gen. 28 5843-82
[DS] Drinfel'd V G and Sokolov V V 1985 Lie algebras and equations of Korteweg-de Vries type J. Sov. Math. 30 1975-2036
[FS1] Fuji K and Suzuki T 2006 The sixth Painlevé equation arising from $D_{4}^{(1)}$ hierarchy J. Phys. A: Math. Gen. 39 12073-82
[FS2] Fuji K and Suzuki T 2008 Higher order Painlevé system of type $D_{2 n+2}^{(1)}$ arising from integrable hierarchy Int. Math. Res. Not. 1-21
[IKSY] Iwasaki K, Kimura H, Shimomura S and Yoshida M 1991 From Gauss to Painlevé-a modern theory of special functions Aspects of Mathematics vol E16 (Braunschweig: Vieweg)
[Kac] Kac V G 1990 Infinite Dimensional Lie Algebras (Cambridge: Cambridge University Press)
[KIK] Kikuchi T, Ikeda T and Kakei S 2003 Similarity reduction of the modified Yajima-Oikawa equation J. Phys. A: Math. Gen. 36 11465-80
[KK1] Kakei S and Kikuchi T 2004 Affine Lie group approach to a derivative nonlinear Schrödinger equation and its similarity reduction Int. Math. Res. Not. 78 4181-209
[KK2] Kakei S and Kikuchi T 2007 The sixth Painlevé equation as similarity reduction of $\widehat{\mathfrak{g}}_{3}$ hierarchy Lett. Math. Phys. 79 221-34
[KP] Kac V G and Peterson D 1985112 Constructions of the basic representation of the Roop Group of E_{8} Symp. on Anomalies, Geometry and Topology ed W A Baedeen and A R White (Singapore: World Scientific) pp 276-98
[NY1] Noumi M and Yamada Y 1998 Higher order Painlevé equations of type $A_{l}^{(1)}$ Funkcial. Ekvac. 41 483-503
[NY2] Noumi M and Yamada Y 2001 Birational Weyl group action arising from a nilpotent Poisson algebra Physics and Combinatorics 1999 Proc. Nagoya 1999 Int. Workshop ed A N Kirillov, A Tsuchiya and H Umemura (Singapore: World Scientific) pp 287-319
[O1] Okamoto K 1987 Studies on the Painlevé equations: I Ann. Math. Pura Appl. 146 337-81
Okamoto K 1987 Studies on the Painlevé equations: II Japan. J. Math. 13 47-76
Okamoto K 1986 Studies on the Painlevé equations: III Math. Ann. 275 221-56
Okamoto K 1987 Studies on the Painlevé equations: IV Funkcial. Ekvac. 30 305-32
[O2] Okamoto K 1999 The Hamiltonians associated with the Painlevé equations The Painlevé Property: One Century Later (CRM Series in Mathematical Physics) ed R Conte (Berlin: Springer)
[S] Sasano Y 2006 Higher-order Painlevé equations of type $D_{l}^{(1)}$ RIMS Koukyuroku 1473 143-63

